anonymous
  • anonymous
Find an explicit rule for the nth term of the sequence. 9, 36, 144, 576, ... an = 9 • 4n - 1 an = 4 • 9n - 1 an = 9 • 4n an = 9 • 4n + 1
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

AravindG
  • AravindG
first of all what do u see as relation between each consecutive term?
anonymous
  • anonymous
i have no idea
anonymous
  • anonymous
Lol...It is a G.P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
With Common Ratio 4
AravindG
  • AravindG
9*4=36 36*4=144
AravindG
  • AravindG
nw u understand ?
anonymous
  • anonymous
okay
AravindG
  • AravindG
nth term= \(\large a r^{n-1}\) for a GP Where a is first term r is common ratio
AravindG
  • AravindG
nw tell me what will be the answer?
anonymous
  • anonymous
2304
anonymous
  • anonymous
an = 9 • 4n
AravindG
  • AravindG
try again ? ar^n-1 !!
AravindG
  • AravindG
remember
AravindG
  • AravindG
@miley23 do u get it ?
anonymous
  • anonymous
an = 4 • 9n - 1
AravindG
  • AravindG
why so ?
AravindG
  • AravindG
look at the formula !!!
AravindG
  • AravindG
a comes first !
anonymous
  • anonymous
an = 9 • 4n - 1
AravindG
  • AravindG
finally :) \[\checkmark \]
anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.