anonymous
  • anonymous
limit comupting limit using the limit law
Calculus1
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\lim_{x \rightarrow 1} \frac{ x^4+x^3-2x }{ }\]
anonymous
  • anonymous
not working so Lim x^4+x^3-2x/x^5+2x-3 x->1
ZeHanz
  • ZeHanz
Do you mean l'Hôpital's Rule by limit law? In that case take the derivative of both the numerator and the denominator and then take the limit as x goes to 1.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes!
anonymous
  • anonymous
I thought I need to factorize first
ZeHanz
  • ZeHanz
That can help sometimes, but factorising the denominator is difficult and l'H will crack it anyway...
anonymous
  • anonymous
Whats I`H?
anonymous
  • anonymous
I have to go meeting but I will back later. thanks,
ZeHanz
  • ZeHanz
l'H = l'Hôpital's Rule
anonymous
  • anonymous
Do i plug numbers into the equation>?
anonymous
  • anonymous
No, using l'Hôpital's Rule allows you to take the limit as x goes to 1 of the top and bottom separately.
ZeHanz
  • ZeHanz
So, after differentiating separately yo now have this:\[\lim_{x \rightarrow 1}\frac{ 4x^3+3x^2-2 }{ 5x^4+2 }\]No 0/0 problem anymore, just set x=1 to see the result.
anonymous
  • anonymous
Ok thank you!
ZeHanz
  • ZeHanz
YW!

Looking for something else?

Not the answer you are looking for? Search for more explanations.