anonymous
  • anonymous
Finding the exact value of trig. functions?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Finding the exact value of trig. functions?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I have this I'm trying to figure out, \[\cot (- \frac{ 5 \pi }{ 4 } )\]
anonymous
  • anonymous
it's \[\cot(-\frac{5}{4}\pi) = \frac{\cos(-\frac{5}{4}\pi)}{\sin(-\frac{5}{4}\pi)}\] can you find those?
anonymous
  • anonymous
Wouldnt it just cancel out?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
if by cancel out you mean will give -1 , then yeah :) remember : cos(-x) =cosx
anonymous
  • anonymous
Nope thats not what I meant lol But thanks
anonymous
  • anonymous
yeah I figured that, my point was that \[\cos(-\frac{5}{4}\pi)=\cos(\frac{5}{4}\pi)=\frac{1}{\sqrt{2}}\] and \[\sin(-\frac{5}{4}\pi)=-\frac{1}{\sqrt{2}}\]
anonymous
  • anonymous
I was thinking that the - 5/4 pi cancels out for some reason

Looking for something else?

Not the answer you are looking for? Search for more explanations.