At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

I need help on finding the x intercept on this quadratic function,
|dw:1360627184057:dw|

do you know the formula? http://en.wikipedia.org/wiki/Quadratic_equation#Quadratic_formula

I do now I think,

Hold on,

Ok, so I solve it like this?
|dw:1360627636615:dw|

almost, a= 6 not 6x^2

that way you have a number :D

What happens to the x^2?

Them 2 solutions got me lost..

|dw:1360628346901:dw|

I got that so far,

i mean \[x_2= 1-\frac{1}{\sqrt{6}}\]

ahem, yeah with -1 ... :)

How did you get the\[\sqrt{24}\] ?

\[12^2 - 4\cdot 6 \cdot 5 = 144 - 120 = 24\]

Ah, ok I was thinking 12*12 = 120 instead of 144.
My bad,

But then how did \[2\sqrt{6}\] come in?

The square roots throw me off...

\[\sqrt{24}=\sqrt{4\cdot 6} =\sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}\]

Ah ok got it thanks.!

you welcome :)

Do we do anything else to it?

what do you mean?

Is there anything else I should do to the answer(s)?
None of them match my answer choices

hmm what are your choices?

Ah ok thank you

\[\frac{-6\pm\sqrt{6}}{6} = -1 \pm \frac{\sqrt{6}}{6} = -1\pm \frac{1}{\sqrt{6}}\]

Got it.!