anonymous
  • anonymous
Let's say there is a stable population size Q that p(t) approaches as time passes. Thus the speed at which the population is growing will approach zero as the population size approaches Q. One way to model this is via the differential equation p' = kp(Q-p) p(0) = A. The solution of this initial value problem is p(t) =
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
If \[\frac{dp}{dt}=kp(Q-p)\]then\[\frac{dt}{dp}=\frac{1}{k}\frac{1}{p(Q-p)}=\frac{1}{k}[\frac{1}{Q(Q-p)}+\frac{1}{Qp}]\]thus integrate both sides with respect to p\[t=\frac{1}{kQ}[ln(p)-ln(Q-P)]=\frac{1}{kQ}ln(\frac{p}{Q-p})\]so\[kQt = ln(\frac{p}{Q-p})\]\[e^{kQt}=\frac{p}{Q-p}\]or\[p=\frac{Qe^{kQt}}{1+e^{kQt}}\]at t = 0\[p(0) = A = \frac{Q 1}{1+1}=Q/2\]or Q = 2A, so\[p(t)= \frac{2A e^{kQt}}{1+e^{kQt}}\]
anonymous
  • anonymous
ohhh i see where i went wrong, thanks for the help!

Looking for something else?

Not the answer you are looking for? Search for more explanations.