anonymous
  • anonymous
Let's say there is a stable population size Q that p(t) approaches as time passes. Thus the speed at which the population is growing will approach zero as the population size approaches Q. One way to model this is via the differential equation p' = kp(Q-p) p(0) = A. The solution of this initial value problem is p(t) =
Differential Equations
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
If \[\frac{dp}{dt}=kp(Q-p)\]then\[\frac{dt}{dp}=\frac{1}{k}\frac{1}{p(Q-p)}=\frac{1}{k}[\frac{1}{Q(Q-p)}+\frac{1}{Qp}]\]thus integrate both sides with respect to p\[t=\frac{1}{kQ}[ln(p)-ln(Q-P)]=\frac{1}{kQ}ln(\frac{p}{Q-p})\]so\[kQt = ln(\frac{p}{Q-p})\]\[e^{kQt}=\frac{p}{Q-p}\]or\[p=\frac{Qe^{kQt}}{1+e^{kQt}}\]at t = 0\[p(0) = A = \frac{Q 1}{1+1}=Q/2\]or Q = 2A, so\[p(t)= \frac{2A e^{kQt}}{1+e^{kQt}}\]
anonymous
  • anonymous
ohhh i see where i went wrong, thanks for the help!

Looking for something else?

Not the answer you are looking for? Search for more explanations.