anonymous
  • anonymous
solve the following equation on interval [0,2pi) 1-cosx=-sinx
Precalculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
whpalmer4
  • whpalmer4
Let's write c instead of \(\cos x\) and s instead of \(\sin x\). This is just to reduce the amount of writing involved. \[1-c = -s\]Square both sides \[(1-c)(1-c) = 1-2c+c^2 = s^2\]Remember that \[\sin^2x+\cos^2x = 1\]so we can rewrite the right hand side as \[1-2c+c^2=1-c^2\]If we solve that for \(c\) \[-2c+2c^2 = 0\]\[-c+c^2=0\]\[c^2=c\]\[c=1\]And now we undo our substitution to reveal\[\cos x = 1\]Where does \(\cos x=1\) in the interval \([0,2\pi)\)?
anonymous
  • anonymous
thank you so much

Looking for something else?

Not the answer you are looking for? Search for more explanations.