anonymous
  • anonymous
Find the derivative of: y = cos^2(x) + cos(x^2)
Calculus1
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
y = (cos(x))^2 + cos(x^2) //power rule for the cos(x). also you have to take the derivative of the inside of the cos(x) y' = 2*(cos(x))*(-sin(x)) + d/dx(cos(x^2)) // now take the derivative of the second part of the sum. no power rule. just take derivative of the cos() and then the derivative of the inside. y' = 2*(cos(x))*(-sin(x)) + (-sin(x^2))*(2x) // so you can factor a 2 if you want.
anonymous
  • anonymous
Why would you have the first -sin(x)?
anonymous
  • anonymous
Shouldn't it just be -1? I'm lost.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
you have to take the derivative of the cos(x) which is -sin(x)
anonymous
  • anonymous
Oh right... duh. Thank you so much!
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.