anonymous
  • anonymous
How the following integral is calculated : \int\limits_{}^{} 9.8e^(0.196t)dt = 50e^(0.196t); I cannot understand the method used here. Th for helping!
OCW Scholar - Multivariable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The correct equation I'm referring to is: \[\int\limits_{}^{} 9.8e^(0.196t) dt = 50e^(0.196t);\]
anonymous
  • anonymous
You can use substitution for the exponent 0.196t = u. Then you calculate dt and du by taking the derivative from both sides of the substitution to obtain 0.196dt = du, and replace dt = du/0.196. The term 9.8/0.196 = 50 just comes out of the integral and you are left with \[50\int\limits e^udu\] which readily evaluates to \[50(e^u+C)\] where C is some integration constant. Then you simply reverse back the substitution u=0.196t.

Looking for something else?

Not the answer you are looking for? Search for more explanations.