Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Form a polynomial f(x) with real coefficients having the given degree and zeros. Degree: 4; zeros: 2i and -3i

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
In general, if you have a polynomial with real coefficients, and some complex root \(\alpha i\) where \(\alpha\) is a real number, the you also have the complex root \(-\alpha i\). Using this, can you tell me what all the roots of your polynomial will be?
2i, -2i, -3i, and 3i?
Bingo. So that means your factored polynomial will be \[(x-2i)(x+2i)(x-3i)(x+3i).\]Now you just have to expand it out.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i got this answer: x^3 -3ix^2-2ix^2+6ix^2-4xi^2+12i^2.
Hmmm. I've definitely got something different. I'll walk you through the first few steps I did. \[(x-2i)(x+2i)=x^2-2ix+2ix-(2i)^2=x^2-4(-1)=x^2+4\]Note that \(i^2=-1\) by definition. Similarly, \[(x-3i)(x+3i)=x^2-3ix+3ix-(3i)^2=x^2-9(-1)=x^2+9\]Using this, can you find \[(x^2+4)(x^2+9)\]on your own?

Not the answer you are looking for?

Search for more explanations.

Ask your own question