I ran into a 1st order DiffEQ that....

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I ran into a 1st order DiffEQ that....

Differential Equations
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I cannot figure which method to solve it with (linear, exact, homo, ect) x(dy/dx)=y + sqrt(x^2 + y^2)
\[x \frac{ dy }{ dx }=y + \sqrt( x^2-y^2) \]
subtraction not addition, sorry...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

homogenous \(y=ux\) you have to change it; to seperable
\[\large x\frac{dy}{dx}=y+\sqrt{x^2+y^2}\] correct?
no x^2-y^2 is under the radical, sorry about typo
\[\large x\frac{dy}{dx}=y+\sqrt{x^2-y^2}\]???
yes.
so, its homogeous \(y=ux\) \[\frac{dy}{dx}=v+x\frac{dv}{dx}\] are you able to start it?
indeed i have it from here.... thank you for the help!
:) if you need any help; feel free to ask :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question