anonymous
  • anonymous
Consider the sequence 2,6,18,54,... Let n = the term number in the sequence. Let A(n) = the value of the nth term of the sequence. What is the comon ratio of the sequence.? Complete each statement. a. A(1) = 2 = 2 x 3^? b. A(2) = 6 = 2 x 3 = 2 x 3^? c. A(3) = 18 = 2 x 3 x 3 = 2 x 3^? d. A(4) = 54 = 2 x 3 x 3 x 3 = 2 x 3^? Thanks! (: Medals will be given lol.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The x's are mutiplication and you dont know the exponets.
AravindG
  • AravindG
if a,b,c form a GP Then common ratio is given by r=b/a=c/b
AravindG
  • AravindG
now can u tell the common ratio here?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I know the common ratio is 3, I don't know how to do the bottom./:
AravindG
  • AravindG
nth term of a GP is given by ar^(n-1) where a is first term and r is common ratio ..i hope u can do it now :)
anonymous
  • anonymous
Oh okiee. Thanks.
AravindG
  • AravindG
yw :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.