anonymous
  • anonymous
need help with a integral (sin^2(t)cos^4(t)), I can split it up into: ((1-cos(2t))/2)((1+cos(2t))/2)^2, but the solution then takes out the constants and make it so its 1/8 infront of the integral, how do you get 1/8? I can get 1/4 but not 1/8
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
The way I would do it is to apply\[\sin^2t=1-\cos^2t\]them use the double angle formula\[\cos^2t=\frac12(1+\cos(2t))\]
hartnn
  • hartnn
you wanted to know how we get 1/8 ? [(1-...)/2 ] [(1+...)/2]^2 = [1/2-.....] [1/4+ ...] = [1/8 +....]
anonymous
  • anonymous
|dw:1360780322642:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ah, i see what your saying now
hartnn
  • hartnn
|dw:1360780593054:dw|
anonymous
  • anonymous
it was taking the second part and squaring it and expanding it that was confusing but when I expanded it i forgot about what happened to my 2 on the bottom yes, thank you
hartnn
  • hartnn
welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.