• anonymous
Consider the sets A_n = {1 + k(n!) : 1 <= k <= n}, where the parameter k is assumed to be an integer. Show that any two elements of A_n are relatively prime.
  • chestercat
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • KingGeorge
Well, take \(a=1+k_1(n!)\) and \(b=1+k_2(n!)\) in \(A_n\). and suppose some prime \(p\) divides both \(a\) and \(b\) (there must be such a prime if they are not coprime). Then \(p|(1+k_1(n!))\) implies that \(p\) does not divide \(k_1\) or \(n!\). Likewise, \(p\) does not divide \(k_2\) either. WLOG, assume \(k_1>k_2\). Then \(a-b=n!(k_1-k_2)\), but since \(p|a,b\), \(p|a-b\), and \(p\nmid n!\), it must be that \(p|k_1-k_2\). Hmmm. I've gotten stuck. Give me a minute.
  • KingGeorge
I'm sorry, but I've got to go now. If I think of something, I'll come back on later tonight and post what I've got.
  • KingGeorge
I missed something very obvious. We have that \(p|k_1-k_2\). However, \(k_2

Looking for something else?

Not the answer you are looking for? Search for more explanations.