ksaimouli
  • ksaimouli
integrate 3x^2e^2x dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
\[\int\limits_{}^{} 3x^2e^2x dx\]
ksaimouli
  • ksaimouli
i took \[u=X^2 dv=e^2x\]
ksaimouli
  • ksaimouli
\[du=2x dx v=\frac{ e^2x }{ 2 }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
\[uv-\int\limits\limits_{}^{}v dv\]
ksaimouli
  • ksaimouli
\[(\frac{ 3 }{ 2 }e ^{2x} x^2 -\]
ksaimouli
  • ksaimouli
after that confused
ksaimouli
  • ksaimouli
how to integrate v
anonymous
  • anonymous
\[\int3x^2e^{2x}dx?\\ 3\int x^2e^{2x}dx\] First, integrate by parts, letting \[\begin{matrix}u=x^2& &dv=e^{2x}dx\\ du=2x\;dx& &v=\frac{1}{2}e^{2x}\end{matrix}\\ 3\int x^2e^{2x}dx=3\left[\frac{1}{2}x^2e^{2x} - \frac{1}{2}\int2xe^{2x}dx\right]\] Now, I'd let \[t=2x\\ dt=2\;dx\\ \frac{1}{2}dt=dx\] \[3\int x^2e^{2x}dx=\frac{3}{2}x^2e^{2x} - \frac{3}{2}\int te^tdt\] Integrate by parts again.
ksaimouli
  • ksaimouli
thx
ksaimouli
  • ksaimouli
can u show me how to integrate sin(x^3) i mean just tell me how to do i will to the rest
ksaimouli
  • ksaimouli
@SithsAndGiggles
anonymous
  • anonymous
There is no closed form of that integral. The best you can do is find an approximation to the function sin(x³), then integrate the approximation over a given interval.
ksaimouli
  • ksaimouli
does this include series because i am seeing for the first time is this cal 2
ksaimouli
  • ksaimouli
tylors series
anonymous
  • anonymous
You could do that, yes. I think there's a way using the power series for that function, but I'm not so sure about that. Do you know how to find the Taylor polynomial of the function?
ksaimouli
  • ksaimouli
noo i have no idea may be we will learn at the end of march next chapter but i am curious to know if u have free time u could explain or else ur wish
anonymous
  • anonymous
I'll post a link to a video that explains it pretty well, if you're patient enough to watch it: https://www.khanacademy.org/math/calculus/sequences_series_approx_calc/maclaurin_taylor/v/maclauren-and-taylor-series-intuition I've only watched the older version, so I'm not sure how much better the updated one may be.
ksaimouli
  • ksaimouli
ya thx i will check that out but ^ how did u get (3rd step) 2xe^2x dx
anonymous
  • anonymous
That's \[v\;du = \frac{1}{2}2xe^{2x}dx,\text{ with the $\frac{1}{2}$ factored out.}\]
ksaimouli
  • ksaimouli
i got that i mean it is \[\int\limits_{}^{}v \] so v=\[\frac{ 1 }{ 2 }e^2x\]
ksaimouli
  • ksaimouli
i dont get where u got 2x in front of e^2x (typo ^ it is e^(2x))
anonymous
  • anonymous
The 2x comes from the du term. Since u = x², we get du = 2x dx
ksaimouli
  • ksaimouli
ohh so it is \[\int\limits_{}^{}v du\]
anonymous
  • anonymous
Yep, integration by parts, using the u and dv substitutions, yields \[uv-\int v\;du\]
ksaimouli
  • ksaimouli
okay
ksaimouli
  • ksaimouli
thx
anonymous
  • anonymous
You're welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.