mathslover
  • mathslover
If sinθ+2sinϕ+3sinΨ=0 and cosθ+2cosϕ+3cosΨ=0 ; then evaluate : a) cos3θ+8cos3ϕ+27cos3Ψ b) sin(ϕ+ψ)+2sin(Ψ+θ)+3sin(θ+ψ)
Meta-math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathslover
  • mathslover
I did the first one ... here : http://openstudy.com/study#/updates/511c70c9e4b06821731b25bc but second one is hard for me... can any1 help me?
.Sam.
  • .Sam.
For 2nd one did you try to use the tirg identities? e.g. sin(A+B)=sinAcosB+cosAsinB
mathslover
  • mathslover
hmn... no but ok i will try it now..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathslover
  • mathslover
But where and how to use that formula @.Sam.
mathslover
  • mathslover
OK leave it can any one prove that if : a + 2b + 3c = 0 then : \[\large{\frac{1}{2} + \frac{2}{b} + \frac{3}{c} = 0 }\]
.Sam.
  • .Sam.
For \[3 \sin (\theta +\psi )+2 \sin (\theta +\Psi )+\sin (\psi +\phi )\] You just use it for each term You'll get \[\small 3 \sin(\theta )\cos (\psi )+3\cos (\theta ) \sin (\psi )+2\sin (\theta ) \cos(\Psi )+2 \cos(\theta ) \sin(\Psi )+\cos(\psi ) \sin(\phi )+ \sin(\psi ) \cos (\phi )\] Then try to factor it and apply ( sinθ+2sinϕ+3sinΨ=0 and cosθ+2cosϕ+3cosΨ=0 )
mathslover
  • mathslover
But is that proving or just verifying ?
.Sam.
  • .Sam.
its actually simplifying, try to factor that then your factored equation can apply this ( sinθ+2sinϕ+3sinΨ=0 and cosθ+2cosϕ+3cosΨ=0 ), which makes the equation smaller by equating them to 0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.