anonymous
  • anonymous
ln(√(6m^4n^2)) write as a sum and/or difference of logarithms, with all variables to the first degree... I know the answer is 1/2ln(6) + 2ln(m) + ln(n) but I don't understand where 1/2 half comes from??
Statistics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ZeHanz
  • ZeHanz
It's the square root.\[\ln(\sqrt{6m^4n^2})=\ln(6m^4n^2)^{\frac{1}{2}}=\frac{1}{2}\ln(6m^4n^2)=...\]
ZeHanz
  • ZeHanz
The rule \[lna^b=b \cdot \ln a\] has been used
anonymous
  • anonymous
is the 1/2 used to get rid of the √ (square root)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ZeHanz
  • ZeHanz
√a=a^(1/2), because:\[(\sqrt{a})^2=a\]and\[(a^{\frac{1}{2}})^2=a^{2 \cdot\frac{1}{2}}=a^1=a\] It is just another way of writing √a.
anonymous
  • anonymous
Oooh. I remember that now. Wow you have been a HUGE help. Thank you so much
ZeHanz
  • ZeHanz
yw!

Looking for something else?

Not the answer you are looking for? Search for more explanations.