AonZ
  • AonZ
Log question. Is there a rule that can solve this? \[\huge \log_{\frac{ 1 }{ a }} \frac{ 1 }{ n }\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AonZ
  • AonZ
@agent0smith can you help with this?
agent0smith
  • agent0smith
Yeah i'm not sure what you want to do with it... you can change it into a couple of different forms?
anonymous
  • anonymous
There is a formula for changing the base of the logarithm.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AonZ
  • AonZ
well il type full equation prove log a(x) = -log 1/2 (x)
hartnn
  • hartnn
use : \(\huge \log_ab=\dfrac{\log b}{\log a}\)
hartnn
  • hartnn
u sure, this is the Q ? prove log a(x) = -log 1/2 (x)
AonZ
  • AonZ
wait my bad LOL log a(x) = -log 1/a (x)
hartnn
  • hartnn
right, use the property i gave on RIGHT side.
AonZ
  • AonZ
|dw:1360928528477:dw|
AonZ
  • AonZ
|dw:1360928591721:dw| these cancel right?
hartnn
  • hartnn
simplify both numerator and denominator. and - log x = log(1/x) was unnecessary and no, not directly.
AonZ
  • AonZ
how else do i do it then??
hartnn
  • hartnn
|dw:1360928748794:dw|
AonZ
  • AonZ
oh so the negatives cancel?
hartnn
  • hartnn
yesh, now negatives can cancel.
hartnn
  • hartnn
again apply that property on what you have...
hartnn
  • hartnn
\(\huge \dfrac{\log b}{\log a}=\log_ab\)
AonZ
  • AonZ
yes i can see how the equal each other now :)
agent0smith
  • agent0smith
\[\log_{a} x = -\log_{\frac{ 1 }{ a }} x\] Use the log rule on the right side \[-\log_{\frac{ 1 }{ a }} x =- \frac{ \log_{a} x }{ \log_{a} \frac{ 1 }{ a } } =- \frac{ \log_{a} x }{ \log_{a} a ^{-1}}=- \frac{ \log_{a} x }{- \log_{a} a} = \frac{ \log_{a} x }{1}\]
agent0smith
  • agent0smith
moved the negatives, makes it easier to follow. \[-\log_{\frac{ 1 }{ a }} x = \frac{ - \log_{a} x }{ \log_{a} \frac{ 1 }{ a } } = \frac{- \log_{a} x }{ \log_{a} a ^{-1}}= \frac{- \log_{a} x }{- \log_{a} a} = \frac{ \log_{a} x }{1}\]
AonZ
  • AonZ
ahh ok thanks to all of you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.