anonymous
  • anonymous
Gaussian elimination method help?
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I have absolutely know idea how to solve this problem using it, 3x - 2y + 2z - w = 2 4x + y + z + 6w = 8 -3x + 2y - 2z + w = 5 5x + 3z - 2w = 1 Wants me to find the solution
anonymous
  • anonymous
I mean no instead of know. *face palm*
tyteen4a03
  • tyteen4a03
The matrix version or the simple "moving variables around" version?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I believe its the 'simple' moving variables around version
tyteen4a03
  • tyteen4a03
I just threw this into Wolfram|Alpha, and it didn't give me any value results. Do you need value results?
anonymous
  • anonymous
Nope, it says find the solution or state that none exists./ So I guess there isnt a solution
tyteen4a03
  • tyteen4a03
Oh, then I'll show you why there isn't one then. When doing the simple version of Gaussian elimination, always look for "bare" variables first (variables that has a coefficient of 1, otherwise known as "that variable with no numbers"). In this case: 3x - 2y + 2z - w = 2 (1) 4x + y + z + 6w = 8 (2) -3x + 2y - 2z + w = 5 (3) 5x + 3z - 2w = 1 (4) In this case, we notice that in Equation 1 and 3, both w are bare (although there's a minus sign before the w in Eq. 1). Shift w around in Eq. 1 to make it positive again. Now change the subject: 3x - 2y + 2z - w = 2 becomes w = 3x - 2y + 2z - 2 and -3x + 2y - 2z + w = 5 becomes w = 5 + 3x - 2y + 2z. Now that w is (sort of) found, hook them together: 3x - 2y + 2z - 2 = 5 + 3x - 2y + 2z. You see that after simplifying you're left with -2 = 5, which is obviously impossible. Therefore, there is no solution since two of the so-called "related equations" contradict each other.
anonymous
  • anonymous
Got it, thank you.!

Looking for something else?

Not the answer you are looking for? Search for more explanations.