anonymous
  • anonymous
I have this fraction z/((z+1)(z+2)) and I don´t know how to get this equivalence z/(z+1)-z/(z+2) anyone could help me?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
whpalmer4
  • whpalmer4
\[\frac{z}{(z+1)} - \frac{z}{(z+2)}\]Make a common denominator: \[\frac{z}{(z+1)}*\frac{(z+2)}{(z+2)} - \frac{z}{(z+2)}*\frac{(z+1)}{(z+1)} = \frac{z^2 + 2z - z^2 -z}{(z+1)(z+2)} = \frac{z}{(z+1)(z+2)} \]
anonymous
  • anonymous
Thanks for your help, but I don't know how did you get this z(z+1)−z(z+2) from z(z+1)(z+2)???
whpalmer4
  • whpalmer4
I just showed you, didn't I? I went in the other direction, starting with the result and going back to the start.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

whpalmer4
  • whpalmer4
If that makes you uncomfortable, you could use partial fractions to go from \[\frac{z}{(z+1)(z+2)} \rightarrow \frac{z}{(z+1)}-\frac{z}{(z+2)}\]
anonymous
  • anonymous
but partial fractions gives me 2/(z+2)-1/(z+1) and I couldn't get z/(z+1)-z/(z+2)
anonymous
  • anonymous
Thanks I got it. thank for your help!!
whpalmer4
  • whpalmer4
What technique did you use?
whpalmer4
  • whpalmer4
\[\frac{2}{z+2}-\frac{1}{z+1}\]Make a common denominator \[\frac{2}{(z+2)}*\frac{(z+1)}{(z+1)} - \frac{1}{(z+1)}*\frac{(z+2)}{(z+2)} = \frac{2(z+1) - (z+2)}{(z+1)(z+2)} = \frac{z}{(z+1)(z+2)}\]Now here's the trick: add antimatter! :-) \[\frac{z}{(z+1)(z+2)} = \frac{z +z^2 - z^2}{(z+1)(z+2)} = \frac{z(z+2)-z(z+1)}{(z+1)(z+2)} =\]\[ \frac{z(z+2)}{(z+1)(z+2)} -\frac{z(z+1)}{(z+1)(z+2)} = \frac{z}{z+2}-\frac{z}{z+1}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.