anonymous
  • anonymous
The limit represents the derivative of some function f at some number a. State such an f and a. lim (tan x − 1)/(x − π/4) (x→π/4) the answer is f(x) = tan x, a = π/4 but I don't know how to get it. :S
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\lim_{x \rightarrow \frac{ \Pi }{ 4 }} \frac{ \tan(x)-1 }{ x-\frac{ \Pi }{ 4 } }\]
hartnn
  • hartnn
you there ?
hartnn
  • hartnn
Limit definition of Derivative of a function : \(\huge \lim \limits_{h \rightarrow 0}\dfrac{f(x+h)-f(x)}{h}\) Limit definition of Derivative of a function at x=a : \(\huge \lim \limits_{h \rightarrow 0}\dfrac{f(a+h)-f(a)}{h}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
what you have is : \( \huge \lim \limits_{x \rightarrow \pi/4}\dfrac{\tan x-1}{x- \pi/4}\) from limit definition i need just h in the denominator, so i can substitute, h = x-pi/4 as, x -> pi/4, h ->0 also, x = pi/4+h so, we have now. \(\huge \lim \limits_{h \rightarrow 0}\dfrac{\tan (\pi/4+h)-1}{h}\) comparing this with limit definition, f(a+h) and tan (pi/4+h) we can figure out , f(x) = tan x , and a = pi/4.
hartnn
  • hartnn
also, we can confirm it by verifying, f(a) = 1, [comparing tan (pi/4+h)-1 with f(a+h)-f(a)], f(a)=f(pi/4)=tan (pi/4) = 1 is true.

Looking for something else?

Not the answer you are looking for? Search for more explanations.