anonymous
  • anonymous
find the partial derivatives
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[a) \frac{ z }{ y }| (1, 1/2) if z= e^{x+2y} \sin y\] b) fx (pi/3, 1) if f(x, y) = x ln (y cos x)
ZeHanz
  • ZeHanz
a) I don't understand, maybe something went wrong with typing in the formula? b) You need fx, so consider y as a constant. e'll need the Product Rule here, and also the Chain Rule...
anonymous
  • anonymous
|dw:1361122439795:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
fx = 1/ (cos x)* -sin (x)
anonymous
  • anonymous
take ln on both sides.
anonymous
  • anonymous
@muhammad9t ibyt i think i already did that for part b
ZeHanz
  • ZeHanz
I understand what you wrote in a) now ;) \[\frac{ \delta z }{ \delta y }=2e^{x+2y}\sin y+e^{x+2y} \cos y=e^{x+2y}(2\sin y + \cos y)\]Now set x = 1 and y = ½: \[\frac{ \delta z }{ \delta y }(1,\frac{ 1 }{ 2 })=e^{2}(2\sin 1+\cos \frac{ 1 }{ 2 })\]
ZeHanz
  • ZeHanz
Second one: f(x, y) = x ln(ycos x). I need fx, so y is constant:\[\frac{ \delta f }{ \delta x }=1 \cdot \ln(y \cos x)+x \cdot \frac{ 1 }{ y \cos x }\cdot -y \sin x=\ln(y \cos x)- x \tan x\]Now set x = pi/3, y = 1:\[\ln(\cos \frac{ \pi }{ 3 })-\frac{ \pi }{ 3 }\tan \frac{ \pi }{ 3 }=\ln \frac{ 1 }{ 2 }-\frac{ \pi }{ 3 }\sqrt{3}=-(\ln2+\frac{ \pi }{ 3 }\sqrt{3})\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.