anonymous
  • anonymous
Show that the area under the curve y=1/x from 1 to Infinity is not finite. Now rotate this curve about the x-axis and find the volume using the same interval. Please help! Im lost at the 2nd part...:(
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
you only need the part about volume?
anonymous
  • anonymous
|dw:1361170984139:dw|
anonymous
  • anonymous
so: \(\large V=\pi \int_1^{\infty}r^2dx=\pi \int_1^{\infty}(\frac{1}{x})^2dx \)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Okay but do I just keep on taking the integral of that? Or do I just leave it as is.
anonymous
  • anonymous
What do you mean "just keep on taking the integral..." ??? Evaluate \(\large \pi \int_1^{\infty}(\frac{1}{x})^2 dx \) will give you the volume.. a finite volume.
anonymous
  • anonymous
Okay how do I evaluate it at infinity?
anonymous
  • anonymous
But that's what you did in the first part of this question when you proved that the area is not finite... Replace the infinity with b and take the limit of the integral as b approaches infinity....
anonymous
  • anonymous
Okay then I just get -4(pi)/b^3
TuringTest
  • TuringTest
try that integration again\[\pi\int_1^\infty\frac1{x^2}dx=\pi\int_1^ \infty x^{-2}dx\]
anonymous
  • anonymous
Is the answer -b^-2(pi)
whpalmer4
  • whpalmer4
\[\pi\int_1^\infty\frac1{x^2}dx=\pi\int_1^ \infty x^{-2}dx = \pi[ \lim_{x\rightarrow\infty} [ - x^{-1}] - (-(1)^{-1})] =\pi( 0+1) = \pi\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.