anonymous
  • anonymous
please help me find the integral ill draw the graph below.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1361220320729:dw|
anonymous
  • anonymous
the points are (-5,-2) (-3,2) (0,1) (2,1) and (4,-1)
anonymous
  • anonymous
|dw:1361220479492:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
please help. the graph is the graph of f(x). which is the derivative.
anonymous
  • anonymous
@Meepi do you not know how to do it???
amistre64
  • amistre64
since the lines are straight, you just find the area between the lines and the x axis along the stated interval
amistre64
  • amistre64
|dw:1361220970819:dw|
amistre64
  • amistre64
|dw:1361221073804:dw| id just determine the area of a rectangle and a triangle ....
anonymous
  • anonymous
|dw:1361221877387:dw| If that is what you meant, than you have \[f(0) = 1, \text{so}\\ \int_{-3}^01\;dt=t|_{-3}^0=0-(-3)=3\]
anonymous
  • anonymous
Otherwise, take @amistre64's advice.

Looking for something else?

Not the answer you are looking for? Search for more explanations.