Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

What is the implicit differentiation of xsiny+cos2y=cosy

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Try and solve it yourselves, taking help from the step below. 1. differentiate the whole equation with respect to x, taking y as constant. name it 'U' 2. repeat step one but this time differentiate with respect to y taking x as constant. name it as 'V' 3. Dy/Dx = - (U/V)
You need to know a few rules: (y)'=y' (x)'=1 (fg)'=f'g+fg' (cos(x))'=-sin(x) (sin(x))'=cos(x) (f(g(x)))'=g'(x) * f '(g(x))
i tried it and i got -siny + xcos(y) dx/dy - sin (2y) * 2 dy/dx but im so confused on what to do next

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Follow my steps.. Assume Y is a constant.. then differentiate for x.. then assume X as constant.. read my reply dude..!
ah i got it. thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question