ksaimouli
  • ksaimouli
slove
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
|dw:1361407430942:dw|
ksaimouli
  • ksaimouli
how this gets to \[\ln \sqrt{2}\]
ksaimouli
  • ksaimouli
@TuringTest

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

tkhunny
  • tkhunny
ln(1) = 0
ksaimouli
  • ksaimouli
i know that so |dw:1361408007302:dw|
tkhunny
  • tkhunny
You MUST have been given fundamental principles of logarithms, Here's one: log(a) + log(b) = log(a*b) Have you any others?
ksaimouli
  • ksaimouli
i dont get this
ksaimouli
  • ksaimouli
this is - so division right
tkhunny
  • tkhunny
Good. log(a) - log(b) = log(a/b) Any more?
ksaimouli
  • ksaimouli
|dw:1361408413459:dw|
ksaimouli
  • ksaimouli
so ln(2)/(2)
ksaimouli
  • ksaimouli
how did they got ln sqrt 2
ksaimouli
  • ksaimouli
@SithsAndGiggles
tkhunny
  • tkhunny
So, you're saying you have only two properties for logarithms? You don't have this one: \(a\cdot \log(b) = \log\left(b^{a}\right)\)?
ksaimouli
  • ksaimouli
|dw:1361408835272:dw| where do u use that
tkhunny
  • tkhunny
\(\dfrac{\ln(2)}{2} = \dfrac{1}{2}\cdot \ln(2) = ln\left(2^{1/2}\right) = \ln(\sqrt{2})\) It's all in the properties!
ksaimouli
  • ksaimouli
wow thx

Looking for something else?

Not the answer you are looking for? Search for more explanations.