TuringTest
  • TuringTest
Annoying Integral\[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^{1/2}}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What's dx doing in the numerator?
anonymous
  • anonymous
oh nvm
experimentX
  • experimentX
substituting x = c + t, i think we could use Euler substitution ... but not sure if that will work http://en.wikipedia.org/wiki/Euler_substitution

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Here's a wall of math. I seriously hope I didn't make any large mistakes. You'll see that I skipped a lot of work, which I did on paper. I hope I made clear what substitutions I made. I also didn't find the actual result; I just reduced and subbed until I got a manageable integral. \[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^\frac{1}{2}}\] \[x=b\tan t\\ dx=b\sec^2t\;dt\] \[\frac{b}{|b|}\int\frac{\sec t}{b^2\tan^2t+a^2}\;dt\\ \frac{b}{|b|}\int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt\] \[u=\tan\left(\frac{t}{2}\right)\\ du=\frac{1}{2}\sec^2\left(\frac{t}{2}\right)\\ 2\cos^2\left(\frac{t}{2}\right)du=dt\\ \frac{2}{1+u^2}du=dt\\ \text{We also have}\\ \sin^2t=\frac{4u^2}{(1+u^2)^2}\\ \cos^2t=\frac{(1-u)^2}{(1+u^2)^2}\] \[\frac{b}{|b|}\int\frac{\frac{1-u}{1+u^2}}{\frac{4b^2u^2}{(1+u^2)^2}+\frac{a^2(1-u)^2}{(1+u^2)^2}}\cdot\frac{2}{1+u^2}du\\ \frac{2b}{|b|}\int\frac{\frac{1-u}{(1+u^2)^2}}{\frac{4b^2u^2+a^2(1-u)^2}{(1+u^2)^2}}du\\ \frac{2b}{|b|}\int\frac{1-u}{4b^2u^2+a^2(1-u)^2}du\] \[s=1-u\\ -ds=du\] \[-\frac{2b}{|b|}\int\frac{s}{4b^2(1-s)^2+a^2s^2}ds\\ \small\text{(Completing the square, we get)}\\ -\frac{2b}{|b|}\int\frac{s}{(a^2+4b^2)\left(s-\frac{4b^2}{a^2+4b^2}\right)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}ds\] \[\left(s-\frac{4b^2}{a^2+4b^2}\right)=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\tan r\\ \text{Denote }c=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\\ ds=c\sec^2r\;dr\] \[-\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{(a^2+4b^2)(c\tan r)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\left(4b-\frac{16b^4}{a^2+4b^2}\right)\tan^2r+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\sec^2r}(\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\left(c\tan r+\frac{4b^2}{a^2+4b^2}\right) \;dr\]
TuringTest
  • TuringTest
I can't see how that will priduce the answer that I am given, which is\[\frac1{a\sqrt{b^2-a^2}}\tan^{-1}\sqrt{\frac{b^2-a^2}{a^2(x^2+b^2)}},~~b^2>a^2\]
experimentX
  • experimentX
Wow ... great effort \[ \int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt = \int\frac{\cos t}{b^2\sin^2t+a^2(1 - \sin^2t )}\;dt \] let sin t= u, ... this should work
TuringTest
  • TuringTest
but yes, great effort :) It may be right if I can simplify that stuff, but that is scaring me right now :P
experimentX
  • experimentX
that lower term simplifies down to 1/(x^2+a^2) giving arctan.
anonymous
  • anonymous
@experimentX, I can't believe I haven't considered that sub. I really took the long route there.
experimentX
  • experimentX
yeah ... you choose Weierstrass subs ... it gives solution, but this isn't much better than Euler subs.

Looking for something else?

Not the answer you are looking for? Search for more explanations.