Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

TuringTest Group Title

Annoying Integral\[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^{1/2}}\]

  • one year ago
  • one year ago

  • This Question is Closed
  1. genius12 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    What's dx doing in the numerator?

    • one year ago
  2. genius12 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    oh nvm

    • one year ago
  3. experimentX Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    substituting x = c + t, i think we could use Euler substitution ... but not sure if that will work http://en.wikipedia.org/wiki/Euler_substitution

    • one year ago
  4. SithsAndGiggles Group Title
    Best Response
    You've already chosen the best response.
    Medals 3

    Here's a wall of math. I seriously hope I didn't make any large mistakes. You'll see that I skipped a lot of work, which I did on paper. I hope I made clear what substitutions I made. I also didn't find the actual result; I just reduced and subbed until I got a manageable integral. \[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^\frac{1}{2}}\] \[x=b\tan t\\ dx=b\sec^2t\;dt\] \[\frac{b}{|b|}\int\frac{\sec t}{b^2\tan^2t+a^2}\;dt\\ \frac{b}{|b|}\int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt\] \[u=\tan\left(\frac{t}{2}\right)\\ du=\frac{1}{2}\sec^2\left(\frac{t}{2}\right)\\ 2\cos^2\left(\frac{t}{2}\right)du=dt\\ \frac{2}{1+u^2}du=dt\\ \text{We also have}\\ \sin^2t=\frac{4u^2}{(1+u^2)^2}\\ \cos^2t=\frac{(1-u)^2}{(1+u^2)^2}\] \[\frac{b}{|b|}\int\frac{\frac{1-u}{1+u^2}}{\frac{4b^2u^2}{(1+u^2)^2}+\frac{a^2(1-u)^2}{(1+u^2)^2}}\cdot\frac{2}{1+u^2}du\\ \frac{2b}{|b|}\int\frac{\frac{1-u}{(1+u^2)^2}}{\frac{4b^2u^2+a^2(1-u)^2}{(1+u^2)^2}}du\\ \frac{2b}{|b|}\int\frac{1-u}{4b^2u^2+a^2(1-u)^2}du\] \[s=1-u\\ -ds=du\] \[-\frac{2b}{|b|}\int\frac{s}{4b^2(1-s)^2+a^2s^2}ds\\ \small\text{(Completing the square, we get)}\\ -\frac{2b}{|b|}\int\frac{s}{(a^2+4b^2)\left(s-\frac{4b^2}{a^2+4b^2}\right)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}ds\] \[\left(s-\frac{4b^2}{a^2+4b^2}\right)=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\tan r\\ \text{Denote }c=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\\ ds=c\sec^2r\;dr\] \[-\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{(a^2+4b^2)(c\tan r)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\left(4b-\frac{16b^4}{a^2+4b^2}\right)\tan^2r+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\sec^2r}(\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\left(c\tan r+\frac{4b^2}{a^2+4b^2}\right) \;dr\]

    • one year ago
  5. TuringTest Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I can't see how that will priduce the answer that I am given, which is\[\frac1{a\sqrt{b^2-a^2}}\tan^{-1}\sqrt{\frac{b^2-a^2}{a^2(x^2+b^2)}},~~b^2>a^2\]

    • one year ago
  6. experimentX Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Wow ... great effort \[ \int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt = \int\frac{\cos t}{b^2\sin^2t+a^2(1 - \sin^2t )}\;dt \] let sin t= u, ... this should work

    • one year ago
  7. TuringTest Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    but yes, great effort :) It may be right if I can simplify that stuff, but that is scaring me right now :P

    • one year ago
  8. experimentX Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    that lower term simplifies down to 1/(x^2+a^2) giving arctan.

    • one year ago
  9. SithsAndGiggles Group Title
    Best Response
    You've already chosen the best response.
    Medals 3

    @experimentX, I can't believe I haven't considered that sub. I really took the long route there.

    • one year ago
  10. experimentX Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    yeah ... you choose Weierstrass subs ... it gives solution, but this isn't much better than Euler subs.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.