Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

TuringTest

  • one year ago

Annoying Integral\[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^{1/2}}\]

  • This Question is Closed
  1. genius12
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    What's dx doing in the numerator?

  2. genius12
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    oh nvm

  3. experimentX
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    substituting x = c + t, i think we could use Euler substitution ... but not sure if that will work http://en.wikipedia.org/wiki/Euler_substitution

  4. SithsAndGiggles
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 3

    Here's a wall of math. I seriously hope I didn't make any large mistakes. You'll see that I skipped a lot of work, which I did on paper. I hope I made clear what substitutions I made. I also didn't find the actual result; I just reduced and subbed until I got a manageable integral. \[\int\frac{dx}{(x^2+a^2)(x^2+b^2)^\frac{1}{2}}\] \[x=b\tan t\\ dx=b\sec^2t\;dt\] \[\frac{b}{|b|}\int\frac{\sec t}{b^2\tan^2t+a^2}\;dt\\ \frac{b}{|b|}\int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt\] \[u=\tan\left(\frac{t}{2}\right)\\ du=\frac{1}{2}\sec^2\left(\frac{t}{2}\right)\\ 2\cos^2\left(\frac{t}{2}\right)du=dt\\ \frac{2}{1+u^2}du=dt\\ \text{We also have}\\ \sin^2t=\frac{4u^2}{(1+u^2)^2}\\ \cos^2t=\frac{(1-u)^2}{(1+u^2)^2}\] \[\frac{b}{|b|}\int\frac{\frac{1-u}{1+u^2}}{\frac{4b^2u^2}{(1+u^2)^2}+\frac{a^2(1-u)^2}{(1+u^2)^2}}\cdot\frac{2}{1+u^2}du\\ \frac{2b}{|b|}\int\frac{\frac{1-u}{(1+u^2)^2}}{\frac{4b^2u^2+a^2(1-u)^2}{(1+u^2)^2}}du\\ \frac{2b}{|b|}\int\frac{1-u}{4b^2u^2+a^2(1-u)^2}du\] \[s=1-u\\ -ds=du\] \[-\frac{2b}{|b|}\int\frac{s}{4b^2(1-s)^2+a^2s^2}ds\\ \small\text{(Completing the square, we get)}\\ -\frac{2b}{|b|}\int\frac{s}{(a^2+4b^2)\left(s-\frac{4b^2}{a^2+4b^2}\right)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}ds\] \[\left(s-\frac{4b^2}{a^2+4b^2}\right)=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\tan r\\ \text{Denote }c=\frac{ \sqrt{4b-\frac{16b^4}{a^2+4b^2}} }{\sqrt{a^2+4b^2}}\\ ds=c\sec^2r\;dr\] \[-\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{(a^2+4b^2)(c\tan r)^2+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\left(4b-\frac{16b^4}{a^2+4b^2}\right)\tan^2r+\left(4b-\frac{16b^4}{a^2+4b^2}\right)}(c\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\frac{c\tan r+\frac{4b^2}{a^2+4b^2} }{\sec^2r}(\sec^2r\;dr)\\ -\frac{2b}{|b|}\cdot\frac{c}{\left(4b-\frac{16b^4}{a^2+4b^2}\right)} \int\left(c\tan r+\frac{4b^2}{a^2+4b^2}\right) \;dr\]

  5. TuringTest
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I can't see how that will priduce the answer that I am given, which is\[\frac1{a\sqrt{b^2-a^2}}\tan^{-1}\sqrt{\frac{b^2-a^2}{a^2(x^2+b^2)}},~~b^2>a^2\]

  6. experimentX
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    Wow ... great effort \[ \int\frac{\cos t}{b^2\sin^2t+a^2\cos^2t}\;dt = \int\frac{\cos t}{b^2\sin^2t+a^2(1 - \sin^2t )}\;dt \] let sin t= u, ... this should work

  7. TuringTest
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    but yes, great effort :) It may be right if I can simplify that stuff, but that is scaring me right now :P

  8. experimentX
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    that lower term simplifies down to 1/(x^2+a^2) giving arctan.

  9. SithsAndGiggles
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 3

    @experimentX, I can't believe I haven't considered that sub. I really took the long route there.

  10. experimentX
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    yeah ... you choose Weierstrass subs ... it gives solution, but this isn't much better than Euler subs.

  11. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.