ksaimouli
  • ksaimouli
simplyfy
Biology
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
how to get ln2 from that
ksaimouli
  • ksaimouli
@zepdrix
ksaimouli
  • ksaimouli
\[\int\limits_{\pi/6}^{\pi/2}\cot x dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
i know that cotx =ln sinx +c
zepdrix
  • zepdrix
The integral of cotx? Ok good c:
ksaimouli
  • ksaimouli
which will givw me ln1-ln(1/2)
ksaimouli
  • ksaimouli
0-ln(1)-ln(2) gives me -ln2 but the book gives ln 2
zepdrix
  • zepdrix
\[\large \ln (a)-\ln(b)=\ln\left(\frac{a}{b}\right)\]
zepdrix
  • zepdrix
where is the 0- coming from? :o
ksaimouli
  • ksaimouli
ln(1)=0
zepdrix
  • zepdrix
Oh you were doing something fancy, hmm
ksaimouli
  • ksaimouli
|dw:1361499527104:dw|
zepdrix
  • zepdrix
Ok i see what you're doing. You just missed a negative in the middle.\[\large 0-\ln(1/2) \qquad = \qquad 0-\left(\ln1-\ln2\right)\]See where you missed it?
ksaimouli
  • ksaimouli
ohhhhhhh godddddddd
zepdrix
  • zepdrix
heh
ksaimouli
  • ksaimouli
thx buddy
ksaimouli
  • ksaimouli
|dw:1361500220284:dw|
ksaimouli
  • ksaimouli
how to do this @zepdrix
zepdrix
  • zepdrix
Write it like this, you might be able to see your `U substitution` easier.\[\large \int\limits (\ln x)^3 \left(\frac{1}{x}dx\right)\]
zepdrix
  • zepdrix
Hmm no that wouldn't do much for us.
ksaimouli
  • ksaimouli
lnx
zepdrix
  • zepdrix
Think about the derivative of natural log and also the derivative of 1/x. Maybe one of those pieces could be our u.
zepdrix
  • zepdrix
Does the derivative of either one show up in the integral?
ksaimouli
  • ksaimouli
if i take derivative of lnx then i get 1/x hmmm
zepdrix
  • zepdrix
Hmmm interesting.
ksaimouli
  • ksaimouli
no idea!
zepdrix
  • zepdrix
So if we let \(\large u=\ln x\), taking the derivative of \(\large u\) gives us, \(\large du=\dfrac{1}{x}dx\) right?
ksaimouli
  • ksaimouli
YES
zepdrix
  • zepdrix
Why is this in the biology section? lol
ksaimouli
  • ksaimouli
oopsss i thought this is in math when i loged in i did not notice that
zepdrix
  • zepdrix
oh silly c:
zepdrix
  • zepdrix
So that would be the correctly substitution, because we have a suitable \(u\) and \(du\) that we can plug in. Understand how to plug them in?
ksaimouli
  • ksaimouli
ohk i got it

Looking for something else?

Not the answer you are looking for? Search for more explanations.