At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Yes @danya1 ?
CAN U HELP ME SIMPLIFY THIS
1 Attachment
Do you know law of exponents?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no
\[x^n x^m=x^{n+m}\] \[\frac{x^n}{x^m}=x^{n-m}\] \[\frac{1}{x^{-n}}=x^n\] \[x^{-n}=\frac{1}{x^n}\] \[(x^ry^t)^s=x^{rs}y^{ts}\] Here are a few laws... You tell me which one you think applies here.
the first one ??
Simplify means they don't want any negative exponents... Which law will help us do this And no we can't use the first one because the bases aren't the same.
the last one
??
Do any of the laws above have negative exponents?
the third and fourth
Can we use the fourth to rewrite that part that has a negative exponent?
. yea
can u help meeeeeeeeeee?? u still here
Hollaa
You can't add the exponents unless the a's and b's are stated to be constants.
...self
Remember that for example\[\large x^5 y^{-5} = \dfrac{x^5}{y^5}\]
Can you simplify it similarly?

Not the answer you are looking for?

Search for more explanations.

Ask your own question