anonymous
  • anonymous
Let m be an arbitrary but a fixed non-zero integer.show that the set G={ma: a is element of Z} of all integral multiples of m, is an infinite abelian group with respect to addition composition...
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

goformit100
  • goformit100
@uri
anonymous
  • anonymous
@experimentX
anonymous
  • anonymous
@terenzreignz

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
check the axioms, they will all work
anonymous
  • anonymous
associative and commutative are inhertied from those same properties in \(\mathbb{Z}\)
anonymous
  • anonymous
thats ok bt hw to work with axioms... shud i take 3 arbitary elements to show it??? hw??

Looking for something else?

Not the answer you are looking for? Search for more explanations.