anonymous
  • anonymous
lim(x->0) sin(x)/sin(2x) ?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\lim (x->0) \frac{ \sin(x) }{ \sin(2x) }\] ?
ash2326
  • ash2326
\[\lim_{x\to 0}\frac{\sin x }{\sin 2x}\] We know that \[\lim_{x\to 0}\frac{\sin x }{x}=1\] Could you use this here to solve ? @Bomull
anonymous
  • anonymous
I don't know how..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ash2326
  • ash2326
Okay, I'll explain you \[\lim_{x\to 0} \frac{\sin x}{\sin 2x}\] Let's multiply and divide by x \[\lim_{x\to 0} \frac{\sin x}{\sin 2x}\times \frac x x\] \[\lim_{x\to 0} \frac{\sin x}{x}\times \frac{x}{\sin 2x}\] Do you understand till here?
anonymous
  • anonymous
yeah
ash2326
  • ash2326
\[\lim_{x\to 0} \frac{\sin x}{x}\times \frac{x}{\sin 2x}\] Let's multiply and divide by 2 \[\lim_{x\to 0} \frac{\sin x}{x}\times \frac{2x}{\sin 2x}\times \frac 1 2\] We know that \[\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{nx}{\sin nx}=1\] so we get \[\lim_{x\to 0} \frac{\sin x}{x}\times \frac{2x}{\sin 2x}\times \frac 1 2\] \[1\times 1 \times \frac 1 2=\frac 1 2\]
ash2326
  • ash2326
Do you understand this?
anonymous
  • anonymous
ah ok thanks! \[\lim_{x \rightarrow 0} \frac{ nx }{ \sin nx }\] is good to know. I think I got it
ash2326
  • ash2326
Good :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.