anonymous
  • anonymous
Let V be the set of 2x2 matrices with standard definitions for vector addition and scalar multiplication. Determine whether V is a vector space. If V is not a vector space, show that at least one of the 10 axioms does not hold. Have to show that the set of all real symmetric matrices, that is, the set of all matrices such that A^t=A is a vector space.
Linear Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
KingGeorge
  • KingGeorge
So which axioms are you having trouble showing?
anonymous
  • anonymous
All of them. I just do not understand for some reason.
KingGeorge
  • KingGeorge
I can walk you through some of them, and hopefully you'll be able to finish the rest.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok
KingGeorge
  • KingGeorge
Oh, before I start, we're assuming this space of symmetric matrices has real valued entries, and has 2x2 matrices. Correct?
anonymous
  • anonymous
yes
KingGeorge
  • KingGeorge
So if \(v\in V\), \(v\) looks like \[\begin{bmatrix}a&b\\b&a\end{bmatrix}\]for \(a,b\in\mathbb{R}\). Axiom 1: If \(u,v\in V\), then \(u+v\in V\). Pf: Let \[u=\begin{bmatrix}a&b\\b&a\end{bmatrix},\quad v=\begin{bmatrix}c&d\\d&c\end{bmatrix}.\]Then \[u+v=\begin{bmatrix}a+c&b+d\\b+d&a+c\end{bmatrix}.\]This is still a symmetric matrix, so axiom 1 is satisfied. Make sense?
anonymous
  • anonymous
yes.
anonymous
  • anonymous
So then Axiom 2 would be satisfied right?
KingGeorge
  • KingGeorge
Almost. There's one more small thing we have to show. Axiom 2: If \(u,v\in V\), then \(u+v=v+u\). Pf: We know\[u+v=\begin{bmatrix}a+c&b+d\\b+d&a+c\end{bmatrix}=\begin{bmatrix}c+a&d+b\\d+b&c+a\end{bmatrix}=v+u.\]So axiom 2 is satisfied because addition of real numbers is commutative.
KingGeorge
  • KingGeorge
Axiom 3: If \(u,v,w\in V\), then \((u+v)+w=u+(v+w)\). Pf: I think you can do this yourself. Just let \(u,v\) be the same matrices as above, and let \[w=\begin{bmatrix}e&f\\f&e\end{bmatrix}\]Then add the matrices together, and use the fact that addition of real numbers is commutative.
KingGeorge
  • KingGeorge
Axiom 4: There exists \(\vec{0}\in V\) such that \(\vec{0}+v=v+\vec{0}=v\) for all \(v\in V\). Pf: Again, I think you can do this. Let \[\vec{0}=\begin{bmatrix}0&0\\0&0\end{bmatrix}\]and do the necessary operations.
anonymous
  • anonymous
yes those last two are starting to make sense now.
KingGeorge
  • KingGeorge
Sorry, for Axiom 3, I should have said "use the fact that addition of real numbers is associative."
anonymous
  • anonymous
I knew what you meant.
KingGeorge
  • KingGeorge
Axiom 5: For all \(v\in V\) there exists some \(-v\in V\) such that \(v+(-v)=-v+v=\vec{0}\). Pf: Another very straightforward one. \[v=\begin{bmatrix}a&b\\b&a\end{bmatrix},\quad -v=\begin{bmatrix}-a&-b\\-b&-a\end{bmatrix}.\]Add them together.
KingGeorge
  • KingGeorge
Axiom 6: For all \(c\in\mathbb{R}\) and \(v\in V\), \(cv\in V\). Pf: Let\[v=\begin{bmatrix}a&b\\b&a\end{bmatrix}.\]Then\[cv=c\begin{bmatrix}a&b\\b&a\end{bmatrix}=\begin{bmatrix}ca&cb\\cb&ca\end{bmatrix}.\]This is still in the form we want, so this axiom is satisfied.
anonymous
  • anonymous
ok starting to make sense now thanks.
KingGeorge
  • KingGeorge
I think you'll be able to handle the rest. Just make sure to take things one step at a time. Also, for the last axiom, use \[\vec{1}=\text{Id}_2=\begin{bmatrix}1&0\\0&1\end{bmatrix}\]
KingGeorge
  • KingGeorge
Call me back if you need help with any more of the axioms.
anonymous
  • anonymous
I have another question for you. Let V=\[\left\{ \left(\begin{matrix}\cos t \\ \sin t\end{matrix}\right) \right\}\] and define \[\left(\begin{matrix}\cos t_1 \\ \sin t_1\end{matrix}\right)⊕ \left(\begin{matrix}\cos t_2 \\ \sin t_2\end{matrix}\right)=\left(\begin{matrix}\cos (t_1+t_2) \\ \sin (t_1+t_2)\end{matrix}\right)\] c ⨀\[\left(\begin{matrix}\cos t \\ \sin t\end{matrix}\right)=\left(\begin{matrix}\cos ct \\ \sin ct\end{matrix}\right)\] Show that if ⊕ and ⨀ are the standard componentwise operations, then V is not a vector space. I'm not quite sure it is not a vector space.
KingGeorge
  • KingGeorge
I think your problem will be with axiom 5: For all \(v\in V\), there exists a \(-v\) such that \(-v+v=v+(-v)=\vec{0}\). There is a \(\vec0\) in this space (try to find this), but you may not have the inverses.

Looking for something else?

Not the answer you are looking for? Search for more explanations.