A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 3 years ago
how come is (sin (h)/h)=1...?
anonymous
 3 years ago
how come is (sin (h)/h)=1...?

This Question is Open

NoelGreco
 3 years ago
Best ResponseYou've already chosen the best response.1\[\lim_{x \rightarrow 0}\frac{ \sin x }{ x }=1\] because the graph of y=x and sin x get closer and closer to each other as they approach zero. I assumed that's what you meant.

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0Use L'hopitals rule. If\[ \lim_{x \rightarrow a} \frac{ a(x) }{ b(x) }= \frac{ 0 }{ 0 }\] then \[\lim_{x \rightarrow a} \frac{ a(x) }{ b(x) }=\lim_{x \rightarrow a}\frac{ a(x) ' }{ b(x) ' }\]

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0To use L'Hopitals rule you need to know the derivative of sin(x), but to derivate sin(x) you need to know what is the limit of sin(x)/x when x approaches 0, so this is circular proof and thus not valid. Here is one proof that starts from the geometrical fact that if x is in radians and positive but less than pi/2 then sin(x) <= x <= tan(x). If we divide this inequity by sin(x) (>0) we get: 1 <= x/sin(x) <= 1/cos(x) If we take the inverse of this we get: 1>= sin(x)/x >= cos(x) If we now let x approach 0 we get: 1>= sin(0)/0 >= cos(0) So because cos(0) = 1 sin(0)/0 = 1.

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0Here's another interesting geometric proof using the squeeze theorem. http://tutorial.math.lamar.edu/Classes/CalcI/ProofTrigDeriv.aspx
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.