Could someone please verify that I solved the following integral correctly (click to see).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Could someone please verify that I solved the following integral correctly (click to see).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{}^{}\tan(x)\sec ^{3}(x)dx\] \[=\int\limits_{}^{}\tan(x)\sec(x)\sec ^{2}(x)dx\] \[=\int\limits_{}^{}\tan(x)\sec(x)u ^{2}\frac{ du }{ \sec(x)\tan(x) }\] \[=\int\limits_{}^{}u ^{2}du=\frac{ \sec ^{3}(x) }{ 3 }+C\]
Idk if what I did was legal, but I got the right answer
Wes you solved it correctly, though you mixed your variables. You should never have u and x in the same expression.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Yes*
I've seen u's and x's in the same expression many times, that's how x values are canceled and u's remain
I would have written\[\int\sec^3x\tan xdx=\]\[\int\sec^2x\sec x\tan xdx\]\[u=\sec x\implies du=\sec x\tan xdx\]and just subed in i'm not saying that what you did is totally wrong, I'm just saying it's a bad habit, and may confuse you later on. I do the trick you are referring to if I have only a constant that appears due to the u-sub, but with other variables it can get confusing. Still, right answer, nice job.

Not the answer you are looking for?

Search for more explanations.

Ask your own question