anonymous
  • anonymous
Integrate (x+3)/(x-7)^2 using partial integration method?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
Partial fractions?
.Sam.
  • .Sam.
\[\frac{3+x}{(x-7)^2}=\frac{A}{x-7}+\frac{B}{(x-7)^2}\]
anonymous
  • anonymous
Yeah, it was partial fractions. My bad. lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
So did you get it?
anonymous
  • anonymous
I knew how to do it up until this point but if you plug in 7, it gives you A(0) + B(0) = 10, so how do I find out the values of A and B separately?
anonymous
  • anonymous
Try values other than 7. Like x = 1 and 0, for convenience. This should give you a system of two equations with the unknowns, A and B.
anonymous
  • anonymous
I tried 6 and 8 and answer that I got is A=10 , B= 1. I hope that's correct
.Sam.
  • .Sam.
\[x+3=B+A (x-7)\] When x=7 B=10 When B has this value, when x=0, 0+3=10-7A A=1 \[\frac{x+3}{(x-7)^2}=\frac{1}{x-7}+\frac{10}{(x-7)^2}\]
.Sam.
  • .Sam.
Can you do it now? \[\int\limits \left(\frac{10}{(x-7)^2}+\frac{1}{x-7}\right) \, dx\]
anonymous
  • anonymous
yes. thank you for your help

Looking for something else?

Not the answer you are looking for? Search for more explanations.