anonymous
  • anonymous
Can you guys identify the quadric surface using completing the squares of this equation. x^2+4y^2-6x+8y+4z=0? Thankyou :))
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sirm3d
  • sirm3d
x^2 -6x +y^2 + 8y = -4z x^2-6x+9 + y^2+8y+16=-4z+25 (x-3)^2 + (y+4)^2=-4(z-25/4) it is a paraboloid of revolution, with vertex at (3,-4,25/4)
anonymous
  • anonymous
where is 4y^2 in the first equation?
sirm3d
  • sirm3d
oh, its 4y2. sorry.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
its ok hehe .. but where did you get 9 and 16 in the 2nd equation?
anonymous
  • anonymous
sir how can i sketch the level curve z=k for the specified values of k. this is the equation z=x^2+y; k=-2, -1, 0, 1, 2
sirm3d
  • sirm3d
completing squares, my dear. \[x^2+4y^2-6x+8y+4z=0\\(x^2-6x+9)+4(y^2+2y+1)=-4z+9+4\\(x-3)^2+4(y+1)^2=-4(z-\tfrac{13}{4})\\\frac{(x-3)^2}{4}+\frac{(y+1)^2}{1}=\frac{z-\tfrac{13}{4}}{-1}\]
anonymous
  • anonymous
Thank you so much :)) nakalimutan ko na po kc hehehe .. Yung another question ko po help naman po.
anonymous
  • anonymous
Sir thank you so much po sa lahat ng response nyo. sa lahat ng help nyo :))
sirm3d
  • sirm3d
it is not a paraboloid of revolution as i said in my previous post. it is an elliptic paraboloid

Looking for something else?

Not the answer you are looking for? Search for more explanations.