At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

Can you phrase that a bit better please.

|dw:1361889363650:dw|
this is for a ray

i.e. plane wave front
can do the same for sperical wavefront

I'm thinking huygens principle

|dw:1361889464131:dw|

polarizing light?

I haven't learnt about electric field lines produced by photons

light is an electromagnetic wave, right?

so i want to know what do electric field vectors look like for a spherical wave front

|dw:1361889809337:dw|

yes

max wells equations will sort you out

http://www.irregularwebcomic.net/annotations/annot1420a.gif

Maxwell's*

how do i use them to solve this problem?
can you solve this problem please

|dw:1361890486162:dw|

Same applied for electric field E, as \[E = \frac{ Q }{ 4 \pi \epsilon_0 r^2 }\]

Where source strength would be \[= \frac{ Q }{ \epsilon_0 }\]

|dw:1361892248346:dw|