• anonymous
What is the sum of the multiples of 4 from 16 to 100?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
\[\sum_{4}^{20}4x=\frac{ 4(16(16+1)) }{ 2 }=544\]
  • anonymous
the answer choices are 1,218 1,276 1,300 1,334
  • rosedewittbukater
I'm doing this test right now. I have no idea if I'm right because I havent finished it yet, but I did 25-3 to get 22 because thats how many numbers are in between 4 and 25 including 4 and 25. Then I used the formula the book gave us \[S _{n}=\frac{ n }{ 2 }(a _{1}+a _{n)}\] \[S _{22}=\frac{ 22 }{ 2 }(116)\] \[=\frac{ 2552 }{ 2 }\] \[=1276\] At first I just did it in a calculator by doing (4x4)+(4x5)+(4x6)+(4x7) all the way to 4x25 and got the same thing. Then I tried the equation. Let me know if you submitted it and what you got. This unit is confusing me a lot so far.

Looking for something else?

Not the answer you are looking for? Search for more explanations.