At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

\[\int\limits_{}\frac{ 2x^3 }{ x^2-4 }\]

i should do the long division right

i got \[x^2-4+\frac{ 8x }{ 2x }\]

You're right about doing long division first, but it doesn't look like you did it right.

|dw:1361917090294:dw|

|dw:1361917028271:dw|

Right, so by long division you get
\[2x+\frac{8x}{x^2-4}\]

so should i make the whole function as|dw:1361917417172:dw|

right here i could use u substitution right

Or that, yes. A sub might actually shorten the work, so I'd suggest that.

i got \[x^2+4\ln(x^2-4)\]

+C

is this right @SithsAndGiggles

Yes that's right, though I would replace the parentheses with absolute value bars.

ya i dont know how to use that in equation so put the ()

thx

|2x+1|

ya i got that thx