Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

The half-life of radium is 1600 years. If the initial amount is q0 milligrams, then the quantity q(t) remaining after t years is given by q(t) = q02kt. Find k.

Precalculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
So the equation is\[ q(t) = q_02^{kt} \]
Now, the quantity is going to be halved each time so we know \(k\) is going to be negative. \[ q(t)=q_0\left(\frac{1}{2}\right)^{-kt} \]
We also know: \[ q(1600) = \frac{q_0}{2} = q\left(\frac{1}{2}\right)^{1} \]Since it is the half-life as well as\[ q(1600)=q_0\left(\frac{1}{2}\right)^{-k(1600)}\]See the pattern?\[ 1=-k(1600) \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Solving for \(k\) gives us: \[ k = -\frac{1}{1600} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question