anonymous
  • anonymous
The half-life of radium is 1600 years. If the initial amount is q0 milligrams, then the quantity q(t) remaining after t years is given by q(t) = q02kt. Find k.
Precalculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
So the equation is\[ q(t) = q_02^{kt} \]
anonymous
  • anonymous
Now, the quantity is going to be halved each time so we know \(k\) is going to be negative. \[ q(t)=q_0\left(\frac{1}{2}\right)^{-kt} \]
anonymous
  • anonymous
We also know: \[ q(1600) = \frac{q_0}{2} = q\left(\frac{1}{2}\right)^{1} \]Since it is the half-life as well as\[ q(1600)=q_0\left(\frac{1}{2}\right)^{-k(1600)}\]See the pattern?\[ 1=-k(1600) \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Solving for \(k\) gives us: \[ k = -\frac{1}{1600} \]
anonymous
  • anonymous
@knbarwrgwddsg get it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.