anonymous
  • anonymous
\[\huge I= \int _0^a \frac{f(x)}{f(x-a)+f(x)}\] show that I=a/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
any more info about f(x) even function or odd function ?
hartnn
  • hartnn
basically you need to use this : \(\huge \int \limits _a^b f(x)dx=\int \limits_a^b f(a+b-x)dx\)
hartnn
  • hartnn
\(\huge I= \int _0^a \frac{f(x)}{f(x-a)+f(x)} \\\huge I =\int _0^a \frac{f(a-x)}{f(-x)+f(a-x)} \)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
if f(x)=f(-x) then you get your result after adding the above 2 equations....
anonymous
  • anonymous
i tried a u=x-a substitution
anonymous
  • anonymous
no info about even or odd
anonymous
  • anonymous
oh sry its a-x the original quest\[\huge \int_0^a\frac{f(x)}{f(x)+f(a-x)}dx\]
hartnn
  • hartnn
then using that property will directly give you answer.... and ofcourse you have to add 2 equations u got....
anonymous
  • anonymous
using\[\frac{ a}{a+b}=-\frac{ b }{ a+b }+1\] so \[\int\limits_0^a \frac{ f(x) }{ f(x)+f(a-x) }=\int\limits_0^a \frac{ -f(a-x) }{ f(x)+f(x-a)}+1\]
hartnn
  • hartnn
is that required to be used ? you can use the property...
anonymous
  • anonymous
u=a-x du=-dx \[I=(-)\int_a^0\color{red}{\frac{f(u)}{f(u)+f(a-u)}}du+\int_0^a1\] red same as I so \[I_0^a+I_a^0=a\]
anonymous
  • anonymous
wich property?
hartnn
  • hartnn
\(\huge \int \limits _a^b f(x)dx=\int \limits_a^b f(a+b-x)dx\)
anonymous
  • anonymous
why is this true
hartnn
  • hartnn
you want proof ? i need to look up...
anonymous
  • anonymous
no wait before proof let me see what it gives
shubhamsrg
  • shubhamsrg
I remember the proof.
shubhamsrg
  • shubhamsrg
in RHS, let a+b-x = t => -dx = dt limits also change to x=b to a just substitute and you'll get the LHS
hartnn
  • hartnn
yes ^

Looking for something else?

Not the answer you are looking for? Search for more explanations.