theslytherinhelper
  • theslytherinhelper
Algebra 2, Solving Polynomial Equations Determine the zeros of f(x) = x4 – x3 + 7x2 – 9x – 18.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
theslytherinhelper
  • theslytherinhelper
I've gotten most of the work down, if you'd like to see it. I'm stuck on the last step :(
amistre64
  • amistre64
youre not doing ferrari are you?
theslytherinhelper
  • theslytherinhelper
ferrari?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
x4 – x3 + 7x2 – 9x – 18=0 to get rid of the x3 term, let x=(y+1/4) (y+1/4)^4 – (y+1/4)^3 + (y+1/4)^2 – 9(y+1/4) – 18=0 \[y^4+\frac58y^2-\frac{69}8y-\frac{5171}{256}=0\] put the linear parts on the other side \[y^4+\frac58y^2=\frac{69}8y+\frac{5171}{256}\] complete the square on the left by adding 5y^2/8+25/64 to each side \[(y^2+\frac58)^2=\frac58y^2+\frac{69}8y+\frac{5271}{256}\] this is as far as we can go without introducing another variable, like z adding a z into the left side gives us more room to play with, but we have to adjust the right side by the same amount: (a+b+c)^2 = a^2+2ab+b^2+(c^2+2c(a+b)) so lets input the z on the left, and add z^2 + 2z(y^2+5/8) to the right side \[(y^2+\frac58+z)^2=\frac58y^2+\frac{69}8y+\frac{5271}{256}+z^2 + 2z(y^2+\frac58)\] lets clean up the right side to see it in its quadraitc form for y \[(y^2+\frac58+z)^2=(2z+\frac58)y^2+\frac{69}8y+(z^2+\frac{10}{8}z+\frac{5271}{256}) \] solving the right side for yusing the quadratic formula we get: \[\Large y=\frac{-\frac{69}{8}\pm\sqrt{(\frac{69}{8})^2-4(2z+\frac58)(z^2+\frac{10}{8}z+\frac{5271}{256})}}{2(2z+\frac58)}\] if we can get the discriminant to equal zero, for some reason, the method will give us roots ... so \[(\frac{69}{8})^2-4(2z+\frac58)(z^2+\frac{10}{8}z+\frac{5271}{256})=0\] which simplifies (lol) to:\[8z^3+\frac{25}{2}z^2+\frac{5371}{32}z-\frac{11733}{512}=0\]which is just Cardanos method now.
amistre64
  • amistre64
Cardanos method is to reduse it by removing the z^2; let z=(u-25/48) 8(u-25/48)^3+25(u-25/48)^2/2+5371(u-25/48)/32-11733/512 which reduces to:\[u^3+\frac{484}{24}u=\frac{2918}{216}\] hence: \[u=\sqrt[3]{\sqrt{\frac{(2918/216)^2}{4}+\frac{(484/24)^3}{27}}+\frac{(2918/216)}{2}}\\~~~~~-\sqrt[3]{\sqrt{\frac{(2918/216)^2}{4}+\frac{(484/24)^3}{27}}-\frac{(2918/216)}{2}}\] \[u=...\]
amistre64
  • amistre64
lol, im pretty sure i might have mistyped a number or two, but if youve never heard of ferrari then im sure theres a simpler way they want you to look at this
amistre64
  • amistre64
what is your last step?
theslytherinhelper
  • theslytherinhelper
Thanks sooo much! The last step is simplifying the equation. ^_^
amistre64
  • amistre64
im not sure of the method you used, so ill need to know a little more about how you approached this
amistre64
  • amistre64
my u wasnt all the way simplified \[u^3+\frac{121}{6}u=\frac{1459}{108}\] might make life on my method here a smidge simpler \[u = \sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}=abt~~0.6559\] \[z=u-\frac{25}{48}=\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48}\] plugging this into our (y^2...)^2 = y^2+... setup with the zs gives us \[(y^2+\frac58+z)^2=(2z+\frac58)y^2+\frac{69}8y+(z^2+\frac{10}{8}z+\frac{5271}{256})\] \[(y^2+\frac58+(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48}))^2\\=(2(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})+\frac58)y^2+\frac{69}8y\\+((\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})^2\\+\frac{10}{8}(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})+\frac{5271}{256}\]
amistre64
  • amistre64
im sooo glad for the wolfram :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.