Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

theslytherinhelper

  • one year ago

Algebra 2, Solving Polynomial Equations Determine the zeros of f(x) = x4 – x3 + 7x2 – 9x – 18.

  • This Question is Closed
  1. theslytherinhelper
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I've gotten most of the work down, if you'd like to see it. I'm stuck on the last step :(

  2. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    youre not doing ferrari are you?

  3. theslytherinhelper
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    ferrari?

  4. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    x4 – x3 + 7x2 – 9x – 18=0 to get rid of the x3 term, let x=(y+1/4) (y+1/4)^4 – (y+1/4)^3 + (y+1/4)^2 – 9(y+1/4) – 18=0 \[y^4+\frac58y^2-\frac{69}8y-\frac{5171}{256}=0\] put the linear parts on the other side \[y^4+\frac58y^2=\frac{69}8y+\frac{5171}{256}\] complete the square on the left by adding 5y^2/8+25/64 to each side \[(y^2+\frac58)^2=\frac58y^2+\frac{69}8y+\frac{5271}{256}\] this is as far as we can go without introducing another variable, like z adding a z into the left side gives us more room to play with, but we have to adjust the right side by the same amount: (a+b+c)^2 = a^2+2ab+b^2+(c^2+2c(a+b)) so lets input the z on the left, and add z^2 + 2z(y^2+5/8) to the right side \[(y^2+\frac58+z)^2=\frac58y^2+\frac{69}8y+\frac{5271}{256}+z^2 + 2z(y^2+\frac58)\] lets clean up the right side to see it in its quadraitc form for y \[(y^2+\frac58+z)^2=(2z+\frac58)y^2+\frac{69}8y+(z^2+\frac{10}{8}z+\frac{5271}{256}) \] solving the right side for yusing the quadratic formula we get: \[\Large y=\frac{-\frac{69}{8}\pm\sqrt{(\frac{69}{8})^2-4(2z+\frac58)(z^2+\frac{10}{8}z+\frac{5271}{256})}}{2(2z+\frac58)}\] if we can get the discriminant to equal zero, for some reason, the method will give us roots ... so \[(\frac{69}{8})^2-4(2z+\frac58)(z^2+\frac{10}{8}z+\frac{5271}{256})=0\] which simplifies (lol) to:\[8z^3+\frac{25}{2}z^2+\frac{5371}{32}z-\frac{11733}{512}=0\]which is just Cardanos method now.

  5. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    Cardanos method is to reduse it by removing the z^2; let z=(u-25/48) 8(u-25/48)^3+25(u-25/48)^2/2+5371(u-25/48)/32-11733/512 which reduces to:\[u^3+\frac{484}{24}u=\frac{2918}{216}\] hence: \[u=\sqrt[3]{\sqrt{\frac{(2918/216)^2}{4}+\frac{(484/24)^3}{27}}+\frac{(2918/216)}{2}}\\~~~~~-\sqrt[3]{\sqrt{\frac{(2918/216)^2}{4}+\frac{(484/24)^3}{27}}-\frac{(2918/216)}{2}}\] \[u=...\]

  6. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    lol, im pretty sure i might have mistyped a number or two, but if youve never heard of ferrari then im sure theres a simpler way they want you to look at this

  7. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    what is your last step?

  8. theslytherinhelper
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks sooo much! The last step is simplifying the equation. ^_^

  9. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    im not sure of the method you used, so ill need to know a little more about how you approached this

  10. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    my u wasnt all the way simplified \[u^3+\frac{121}{6}u=\frac{1459}{108}\] might make life on my method here a smidge simpler \[u = \sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}=abt~~0.6559\] \[z=u-\frac{25}{48}=\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48}\] plugging this into our (y^2...)^2 = y^2+... setup with the zs gives us \[(y^2+\frac58+z)^2=(2z+\frac58)y^2+\frac{69}8y+(z^2+\frac{10}{8}z+\frac{5271}{256})\] \[(y^2+\frac58+(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48}))^2\\=(2(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})+\frac58)y^2+\frac{69}8y\\+((\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})^2\\+\frac{10}{8}(\sqrt[3]{\frac{\sqrt{22361}}{8}+\frac{1459}{216}}-\sqrt[3]{\frac{\sqrt{22361}}{8}-\frac{1459}{216}}-\frac{25}{48})+\frac{5271}{256}\]

  11. amistre64
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    im sooo glad for the wolfram :)

  12. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.