• hba

Find the domain and range of the following functions: (a)y=secx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

  • hba

Find the domain and range of the following functions: (a)y=secx

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

  • uri
K.
\[x \neq \frac{ \Pi }{ 2 }, \frac{ 3\Pi }{ 2 }, \frac{ 5\Pi }{ 2 }, . . . . . . .\] \[range : y \ge 1 and y \le -1\]
  • hba
Ahm @yaho021 Domain=R-{x=n(pi/2)} Where pi=1,3,5........ Couldn't get the range thing :/

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

  • hba
How do we determine the range ?
\[\sec(x) = \dfrac{1}{\cos(x)}\]The range of values is \((\infty , -\infty)\).
I may be wrong... let's see
  • hba
Everyone is confusing me :/
No, I meant when \(\cos(x)\) tends to \(0\) from the right side, then \(\sec(x) \) goes towards \(\infty\). And when it tends to \(0\) from the left, then \(\sec(x)\) goes towards \( -\infty\).
So the range is all real numbers.
  • hba
Okay someone said it would be All real numbers-(-1,1)
That's the range of \(\cos(x)\), not \(\sec(x)\)
Think about the range of \(\dfrac{1}{x}\). Whenever \(x\) is near zero, \(\dfrac{1}{x}\) is near infinity.
\[\dfrac{1}{0.0000001} = 1000000\]
  • hba
@Mimi_x3 lol so true :p
YAY! I was right! I thought I'd make a fool of myself

Not the answer you are looking for?

Search for more explanations.

Ask your own question