hba
  • hba
Find the domain and range of the following functions: (a)y=secx
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

uri
  • uri
K.
anonymous
  • anonymous
\[x \neq \frac{ \Pi }{ 2 }, \frac{ 3\Pi }{ 2 }, \frac{ 5\Pi }{ 2 }, . . . . . . .\] \[range : y \ge 1 and y \le -1\]
hba
  • hba
Ahm @yaho021 Domain=R-{x=n(pi/2)} Where pi=1,3,5........ Couldn't get the range thing :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hba
  • hba
How do we determine the range ?
ParthKohli
  • ParthKohli
\[\sec(x) = \dfrac{1}{\cos(x)}\]The range of values is \((\infty , -\infty)\).
ParthKohli
  • ParthKohli
I may be wrong... let's see
hba
  • hba
Everyone is confusing me :/
ParthKohli
  • ParthKohli
No, I meant when \(\cos(x)\) tends to \(0\) from the right side, then \(\sec(x) \) goes towards \(\infty\). And when it tends to \(0\) from the left, then \(\sec(x)\) goes towards \( -\infty\).
ParthKohli
  • ParthKohli
So the range is all real numbers.
hba
  • hba
Okay someone said it would be All real numbers-(-1,1)
ParthKohli
  • ParthKohli
That's the range of \(\cos(x)\), not \(\sec(x)\)
ParthKohli
  • ParthKohli
Think about the range of \(\dfrac{1}{x}\). Whenever \(x\) is near zero, \(\dfrac{1}{x}\) is near infinity.
ParthKohli
  • ParthKohli
\[\dfrac{1}{0.0000001} = 1000000\]
hba
  • hba
@Mimi_x3 lol so true :p
ParthKohli
  • ParthKohli
YAY! I was right! I thought I'd make a fool of myself

Looking for something else?

Not the answer you are looking for? Search for more explanations.