hba
  • hba
Determine the following functions as even,odd or neither. (a) f(x)=|x| (b) f(x)=x+1 (c) f(x)=x^5-x/1+x
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

hartnn
  • hartnn
if f(x) = f(-x) then function is even
hba
  • hba
Answers: (a)even (b)and (c)Neither
ParthKohli
  • ParthKohli
\[f(x) =f(-x) \]Even^^\[f(x) = -f(x)\]Odd^

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hba
  • hba
Right or wrong?
hartnn
  • hartnn
if f(-x)=-f(x) then function is odd
hba
  • hba
I know all that -_-
hba
  • hba
Just check my answers
hartnn
  • hartnn
whats and ?
ParthKohli
  • ParthKohli
Abs value function has \(f(x) = f(-x) \ \ \checkmark \)
hartnn
  • hartnn
a and c are correct what about b?
ParthKohli
  • ParthKohli
For second, \(f(x) \ne f(-x)\) and \(f(x) \ne - f(x)\) for all \(x\). What do you think?
hba
  • hba
f(-x)=-x+1 so,Neither even nor odd
hartnn
  • hartnn
correct.
ParthKohli
  • ParthKohli
Yeah!
hba
  • hba
Thanks for the help guys :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.