shubhamsrg
  • shubhamsrg
Time pass ques: Use 5 zeroes with any mathematical functions to arrive at 14. PS: This has a lame solution. -_-
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
f(x) = x - 100000 f(10014) = 14
shubhamsrg
  • shubhamsrg
cool.. B|
shubhamsrg
  • shubhamsrg
But NO :|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
Let \(f(n) = n + 14\). Then \(f(0 + 0 + 0 + 0 + 0) = 14\)
ParthKohli
  • ParthKohli
B-)
ParthKohli
  • ParthKohli
My solution is lamer!
shubhamsrg
  • shubhamsrg
-_-
mathstudent55
  • mathstudent55
f(x) = 1400000x f(0.00001) = 14 I used 5 zeros twice :-)
shubhamsrg
  • shubhamsrg
good for you :)
anonymous
  • anonymous
S(S(S(S(S(S(S(S(S(S(S(S(S(S(0+0+0+0+0)))))))))))))) This one is the lamest :D
shubhamsrg
  • shubhamsrg
what is this anyways ?
anonymous
  • anonymous
or \(p_{0!}p_{0!+0!+0!+0!}\), where \(p_n\) denotes the nth prime?
anonymous
  • anonymous
S(n) = n + 1, succesor function
shubhamsrg
  • shubhamsrg
aha..hmm I won;t say thats more lame, I'd say thats equally lame relative to my soln.! -_-
shubhamsrg
  • shubhamsrg
but still, its cool.. B|
anonymous
  • anonymous
What's your solution? :p
shubhamsrg
  • shubhamsrg
I'll message you.
ParthKohli
  • ParthKohli
So the answer is...\[\left\lfloor \tan\left(\dfrac{0! + 0! + 0!}{0! + 0!}\right)\right\rfloor\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.