Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve the inequality x^2+2x>=0

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\[x(x + 2) \ge 0\]
Observe that if you want \(x \times (x + 2)\) nonnegative, both \(x\) and \(x + 2\) are nonnegative.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

First time I am solving a 2nd degree inequality :S
Could someone help me continue? :)
I can offer an alternative. Just sketch the graph. That never fails.
I need to do it without a graph
\[x \le -2 \] and \[x \ge0\]
How and why?
Okay, then first find the x-axis intercepts by treating the inequality sign as an equals sign. \[x ^{2}+2x=0\] \[x(x+2)=0\] \[x=-2,0\] Sub in values for \[x<-2\] e.g when x=-3, y=3 Then sub in values for x>0 e.g when x=1, y=3 Since \[x \in (-\infty,-2)\]and \[x \in (0,\infty)\]yield positive answers Therefore \[x ^{2}+2x>=0\] for x=<-2 and x>=0
Two factors: x and x+2 If the product is positive, x and x+2 must both be positive OR x and x+2 must both be negative. Let us make a picture of the factors and their signs at various points on the number line:
And so we see that the product is positive if x <-2 OR x>0 and that is the solution.

Not the answer you are looking for?

Search for more explanations.

Ask your own question