Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Can someone solve this with the steps? 4x-y=4 9x-2y=11 Use the method of substitution to solve the system of this linear equation. What is the ordered pair?

Algebra
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

4x-y=4 can you isolate 'y' from this equation ?
I have no idea. My directions are to use the method of substitution to solve the system of this linear equation.
Hint: add y on both sides, and then subtract 4 from both sides.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

4x - y = 4 --> 4x - 4 = y now sub 4x - 4 in for y in the 2nd equation. 9x - 2y = 11 9x - 2(4x - 4) = 11 distribute the -2 through the parenthesis and solve for x. Once you have x, then you can substitute that back into the 1st equation and solve for y. You can then sub your known variables in either of the original equations to check your answers. If it comes out equal, then your answers are correct.

Not the answer you are looking for?

Search for more explanations.

Ask your own question