Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Capacitors in series and in parallel

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1362354546520:dw| @experimentX
no let me try it
|dw:1362354809409:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1362354804183:dw|
oh ok
An ok way to remember it is that capacitors in series add like resistors in parallel. Other way around too
ok since they're in parallel, the voltages are the same. \[V=V_1=V_2\] \[Q=Q_1+Q_2\] \[C=\frac{Q}{V}\] \[C_1=\frac{Q_1}{V_1}=\frac{Q_1}{V}\] \[C_2=\frac{Q_2}{V_2}=\frac{Q_2}{V}\] \[CV=C_1V+C_2V\] \[C\cancel{V}=C_1\cancel{V}+C_2\cancel V\] C=C_1+C_2
but they have different capacitances.....hmmm?
oh I add the capacitances to get C....the total capacitance of the capacitors in parallel \[C=6 \mu F\]
yeah yeah ... parallel is like absolute capitalism!!
|dw:1362355380229:dw| LOL!!!!!
oh ok let's see|dw:1362355422603:dw| \[C=\frac{Q}{V}\] \[C_1=\frac{Q}{V_1}\] \[C_2=\frac{Q}{V_2}\] \[Q=Q_1=Q_2\] \[V=V_1+V_2\] \[\frac Q C=\frac{Q}{C_1}+\frac{Q}{C_2}\] \[\frac {\cancel Q} C=\frac{\cancel Q}{C_1}+\frac{\cancel Q}{C_2}\] \[\frac 1 C=\frac 1 {C_1}+\frac 1{C_2}\]
\[\frac 1 C=\frac 1 6+\frac 2 6=\frac 3 6\] \[C=2\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question