• anonymous
Create a unique example of dividing a polynomial by a monomial and provide the simplified form. Explain, in complete sentences, the two ways used to simplify this expression and how you would check your quotient for accuracy.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • zepdrix
Hmm ok here's example, hopefully it will help. \(\large f(x)=x^2+2x\) <-- Polynomial right? It has multiple.... "nom..ials" or whatever.. \(\large g(x)=x\) <-- Monomial! Dividing a Polynomial by a Monomial,\[\large \frac{f(x)}{g(x)}\qquad =\qquad \frac{x^2+2x}{x}\]
  • zepdrix
Two ways to simplify this? Hmm I guess one method would be to use Polynomial Long Division. Another method would be to simply split the problem into fractions like this, \[\large \frac{x^2+2x}{x} \qquad = \qquad \frac{x^2}{x}+\frac{2x}{x}\]And then simplify them individually. I dunno if that's the two methods that your book would describe :O But whatev.

Looking for something else?

Not the answer you are looking for? Search for more explanations.