anonymous
  • anonymous
any nifty trick to computing curl in phaser domain?
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I will write out my problem
anonymous
  • anonymous
Given an Electric Field {4 cos(6*10^8 t- 2z), 3 sin(6*10^8-2z)} Find associated Magnetic Field
anonymous
  • anonymous
using the formula \[H=\frac{1}{j \omega \epsilon} \nabla x E\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so we find phaser \[<4 e^{-2zj},-j3e^{-2zj}>\]
anonymous
  • anonymous
of course we are only taking the real component
anonymous
  • anonymous
so we have to find the curl of that
anonymous
  • anonymous
x component \[\partial /\partial y()- \partial/\partial z(y component)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.