Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Areas in the plane

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

The first question. Number 13 :(
Find two areas separately.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes but I get confused on putting the limits for integration. And is it better to integrate in terms of y?
y? You are crazy! Integrating in term of x is MUCH easier. Don't see what it has to do with limit, but you can just set up a integration like this: \[\int_{-2}^{0}(2x^3 -x^2 -5x) - (-x^2+3x)dx + \int_0^2 (-x^2+3x) - (2x^3-x^2-5x)dx\] See what I did here?
oh ok. it's because integrating with y is easier with some areas. I don't know exactly when to integrate with y and x
Well, if functions are used, then just use x. If at least one of the curve don't pass vertical test, then it is better to use y.

Not the answer you are looking for?

Search for more explanations.

Ask your own question